COURSE TYPE	CODE	NAME OF THE COURSE		Т	P	CREDIT
DC	NFMC502	Coal and Mineral Beneficiation	3	1	0	4

COURSE OBJECTIVE

• To equip the students with the knowledge of the theory and practices related to the operation of the cleaning and dewatering technologies used in the industry for coal and ores

LEARNING OUTCOMES

At the end of this course, the students will learn about the

- Theories of coal preparation and mineral processing technologies
- Construction and operation of density separators, magnetic separators, electrical separators and surface-property-based separators
- Construction and operation of dewatering equipment
- Coal preparation and mineral processing flowsheets

No.	TOPICS TO BE COVERED	LECTURE	TUTORIAL	LEARNING
	7 . 1 .1	Hours	Hours	OUTCOME
1	Introduction: Definition, unit operations, necessity, scope, merits and limitations of coal preparation and mineral processing. Important terms: coal, mineral, gangue, ore, concentrate, clean coal, middling, reject, tailing, yield, recovery, ratio of concentration, etc. Properties of coal and minerals relevant to their cleaning and dewatering: density, magnetic behavior, permeability, conductivity, hydrophobicity, etc.	3	1	Introduction to the subject and understanding of the properties related to the processing of coal and minerals
2	Density separation fundamentals: Definition, scope, types, merits and limitations of density separation. Washability analysis for coal and minerals. Washability indices. Mcurve. Ease of cleaning. Concentration criterion.	3	5	Knowledge of the pre-requisites and planning for density separation
3	Density separation equipment I: Jig: Theory of jigging. Construction, operation, application and product	9	1	Knowledge of the theories and practices related to

	discharge in different industrial jigs.			ijaging and dones
	, ,			jigging and dense
	Factors affecting jig performance.			medium
	Dense medium separation: Medium			separation
	characteristics and preparation.			
	Types of dense medium separators			
	- their construction, operation and			
	application. Medium recovery			
	circuits and equipment. Auxiliary			
	equipment in dense medium			
	separation circuits.			
	Density separation equipment II:			
	Flowing film separation: Principles,			
	scope and types. Flowing film			
	separation equipment - their			Understanding of
	construction, operation and			the theory and
4	application.		_	practices for the
	Beneficiation of intermediate-sized	6	1	density separation
	particles by density separation:			of intermediate-
	reflux classifier, teetered bed			sized particles
	separators, water-only cyclones, etc.			l a see L
	Enhanced gravity separation: Need,			
	scope and equipment.			
	Magnetic and Electrical			
	separation:			
	Magnetic separation fundamentals:			
	Review of relevant physical			
	quantities. Types of magnetic			
	materials. Behavior of different			
	materials in a magnetic field.			
	Magnetic separators: Types,			
	· ·			Familianian Can
	application, merits and limitations.			Familiarization
5	Electrical separation fundamentals:	6	2	with the magnetic
	Review of relevant physical			separation theory
	quantities and electrical properties.			and practices
	Electrical separators: Types,			
	construction, operation,			
	application, merits and limitations.			
	Fundamentals: Review of relevant			
	physical quantities and electrical			
	properties.			
	Electrical separators: Types,			
1			i e	i .
	construction, operation, application, merits and limitations.			

Interfacial science, selective flocculation and oil agglomeration: Interfacial properties. Electrical double layer. Electrokinetic and Hydrodynamic properties of interfaces. Young-Laplace equation. Kelvin equation. Principles of selective flocculation and oil agglomeration, reagents, scope, application, limitations, and construction and operation of equipment related to selective flocculation and oil agglomeration.	7	3	Understanding of the underlying phenomena of surface-property- based separation. Knowledge of the recent advances in surface-property- based separation
Froth flotation: Fundamentals: Principles, types, scope, application and limitations of froth flotation. Application of interfacial science in froth flotation. Froth flotation reagents: Types, application and chemistry. Froth flotation equipment: Construction, operation, application and limitations of different types of flotation machines – mechanical, column, Jameson, pneumatic, etc. Froth flotation circuits and practices for coal and ores (copper, lead-zinc, iron, gold, etc.)	8	1	Knowledge of the theory and practice of industrial froth flotation
Total	42	14	56

TEXT BOOKS:

- 1. Wills Mineral Processing Technology by B. A. Wills and J. E. Finch, Elsevier
- 2. SME Mineral Processing and Extractive Metallurgy Handbook by Robert C. Dunne, SME

REFERENCE BOOKS:

- 1. Introduction to mineral processing by E. G. Kelly and D. J. Spottiswood, John Wiley & Sons
- 2. Physics and Chemistry of Interfaces by H. Butt, K. Graf, and M. Kappl, Wiley
- 3. Surface Chemistry of Froth Flotation by S.R. Rao, Springer
- 4. Flotation Science and Engineering by K.A. Matis, CRC Press